Liquid System Electrochemistry

Hummingbird Scientific was the first company to provide a commercially-available holder capable of supporting liquid-electrochemical experiments conducted inside the TEM.  In subsequent years, we have continued to refine the holder’s capabilities.  In its current configuration, the holder enables electrochemical research via integrated biasing contacts that connect to our specially-patterned electrochemical chips, which are available in a variety of materials. Among other topics, the system has been used for key research into battery materials (see Featured Research below).

The analytical electrochemistry tip features the sample basic capabilities of the standard electrochemistry liquid cell, but it also keeps the electrical contacts outside the experimental space. This option includes an optional low-noise potentiostat and fully shielded cabling for maximum analytical capabilities.

Wiring configurations

  • Standard configuration:  In the standard configuration, the system’s wires are not individually shielded. This configuration can connect to Hummingbird’s heater control box as well as a variety of electronic source and measurement devices.
  • Low current/noise:  For very small current or voltage values, we offer an individually-shielded, low-noise wiring system. In this system, a shielded coaxial cable runs through the holder shaft and connects through special micro-coax connectors in the holder.  The system can be configured for compatibility with a range of potentiostats and power supplies.  It is particularly well-suited for small-scale in-situ liquid electrochemistry measurements.

Biologic SP-200 potentiostat 

We are proud to offer the Biologic SP-200 potentiostat as a research-grade measurement tool for electrochemistry experiments. Hummingbird Scientific’s electrochemistry tip and Biologic’s SP-200 potentiostat can be used in combination for corrosion experiments, electrochemistry, electrolysis, and battery and photovoltaic research.


Featured Research


Observation of redox product in lithium-oxygen battery

Lithium-oxygen batteries have exceptional higher energy densities. However, the byproduct lithium peroxide, cannot be easily decomposed during the charging cycle. Now, the work led by researchers from Johns Hopkins University have used Hummingbird Scientific’s liquid electrochemistry TEM holder to demonstrate that the decomposition of lithium peroxide can be improved by adding redox mediators as charge-transfer agents. Their findings are published in the recent issue of Advanced Materials. The fundamental understanding of the lithium-oxygen electrochemistry presented in this work may enable the development of better batteries

Formation of lithium peroxide during discharge. Image copyright © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Formation of lithium peroxide during discharge. Image copyright © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim


Reference: Mingwei Chen et al. Direct Observations of the Formation and Redox-Mediator-Assisted Decomposition of Li2O2 in a Liquid-Cell Li–O2 Microbattery by Scanning Transmission Electron Microscopy. Advanced Materials (2017). Abstract

ElectroChemistry Selected Publications


J. Lim,Y. Li, D. H. Alsem, H. So, S. C. Lee, P. Bai, D.A. Cogswell, X. Liu, N. Jin, Y. Yu, N. J. Salmon, D. A. Shapiro, M. Z. Bazant, T.Tyliszczak, W. C. Chueh, “Origin and Hysteresis of Lithium Compositional Spatiodynamics Within Battery Primary Particles”,  Science, 05 Aug (2016) Abstract
R.R. Unocic. “In-situ Liquid S/TEM: Practical Aspects, Challenges, and Opportunities,” Microscopy and Microanalysis Meeting (2015)
W. Zhang, D.H. Alsem, F. Wang, N. Salmon. “In-Situ Liquid Cell TEM Studies of Electrochemical Reaction in Lithium-Ion Batteries,” Microscopy and Microanalysis Meeting (2015)
J.H. Park, N.M. Schneider, J.M. Grogan, M.C. Reuter, H.H. Bau, S. Kodambaka & F.M. Ross, “Control of Electron Beam-Induced Au Nanocrystal Growth Kinetics
through Solution Chemistry.”  Nano Letters (2015).
C. Wang. “In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view.” Journal of Materials Research, 30, (2015) pp 326-339. Abstract
P. Abellan, B. L. Mehdi, L.R. Parent, M. Gu, C. Park, W. Xu, Y. Zhang, I. Arslan, J.G. Zhang, C.M. Wang, J.E. Evans, and N.D. Browning ”
Probing the Degradation Mechanisms in Electrolyte Solutions for Li-Ion Batteries by in Situ Transmission Electron Microscopy” Nano Lett. 14:3 (2014) 1293-1299
S.W. Chee, D.J. Duquette, F.M. Ross, and R. Hull. “Metastable Structures in Al Thin Films Before the Onset of Corrosion Pitting as Observed using Liquid Cell Transmission Electron Microscopy,” Micoscopy and Microanalysis 20:2 (2014) pp. 462‒468 Abstract
R.R. Unocic, X.G. Sun, R.L. Sacci, L.A. Adamczyk, D.H. Alsem, S. Dai, N.J. Dudney, and K.L. More. “Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy,” Microscopy and Microanalysis 20:4 (2014) pp.1029‒1037 Abstract
R.L. Sacci, N. Dudney, K. More, L.R. Parent, I. Arslan, N.D. Browning, and R.R. Unocic. “Direct Visualization of Initial SEI Morphology and Growth Kinetics During Lithium Deposition by In-Situ Electrochemical Transmission Electron Microscopy,” Chem. Commun. 50 (2014) pp. 2104‒2107 Abstract
M. Gu, L.R. Parent, B.L. Mehdi, R.R. Unocic, M.T. McDowell, R.L. Sacci, W. Xu, J.G. Connell, P. Xu, P. Abellan, X. Chen,Y. Zhang, D.E. Perea, J.E. Evans, L.J. Lauhon, J.G. Zhang, J. Liu, N.D. Browning, Y. Cui, I. Arslan, and C.M. Wang. “Demonstration of an Electrochemical Liquid Cell for Operando Transmission Electron Microscopy Observation of the Lithiation/Delithiation Behavior of Si Nanowire Battery Anodes.” Nano Lett. 13:12 (2013) pp. 6106‒6112 Abstract
S.W. Chee, F.M. Ross, D. Duquette, and R. Hull. “Studies of Corrosion of Al Thin Films using Liquid-Cell Transmission Electron Microscopy,” MRS Proceedings 1525 (2013) Abstract
E.R. White, S.B. Singer, V. Augustyn, W.A. Hubbard, M. Mecklenburg, B. Dunn, and B.C. Regan,“In-Situ Transmission Electron Microscopy of Lead Dendrites and Lead Ions in Aqueous Solution” ACS Nano 6:7 (2012) pp. 6038–6317 Abstract
R.R. Unocic, L.A. Adamczyk, N.J. Dudney, D.H. Alsem, N.J. Salmon, and K.L. More. “In-Situ Electron Microscopy of Electrical Energy Storage Materials,” ECS Fall Meeting 2010 Abstract
C.M. Wang, W. Xu, J. Liu, D.W. Choi, B. Arey, L.V. Saraf, J.G. Zhang, Z.G. Yang, S. Thevuthasan, D.R. Baer, and N. Salmon. “In-situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities,” J. Mater. Res. 25:8 (2010) pp. 1541–1547 Abstract


Read More